High specificity generally characterizes mycorrhizal association in rare lady's slipper orchids, genus Cypripedium.
نویسندگان
چکیده
Lady's slipper orchids (Cypripedium spp.) are rare terrestrial plants that grow throughout the temperate Northern Hemisphere. Like all orchids, they require mycorrhizal fungi for germination and seedling nutrition. The nutritional relationships of adult Cypripedium mycorrhizae are unclear; however, Cypripedium distribution may be limited by mycorrhizal specificity, whether this specificity occurs only during the seedling stage or carries on into adulthood. We attempted to identify the primary mycorrhizal symbionts for 100 Cypripedium plants, and successfully did so with two Cypripedium calceolus, 10 Cypripedium californicum, six Cypripedium candidum, 16 Cypripedium fasciculatum, two Cypripedium guttatum, 12 Cypripedium montanum, and 11 Cypripedium parviflorum plants from a total of 44 populations in Europe and North America, yielding fungal nuclear large subunit and mitochondrial large subunit sequence and RFLP (restriction fragment length polymorphism) data for 59 plants. Because orchid mycorrhizal fungi are typically observed without fruiting structures, we assessed fungal identity through direct PCR (polymerase chain reaction) amplification of fungal genes from mycorrhizally colonized root tissue. Phylogenetic analysis revealed that the great majority of Cypripedium mycorrhizal fungi are members of narrow clades within the fungal family Tulasnellaceae. Rarely occurring root endophytes include members of the Sebacinaceae, Ceratobasidiaceae, and the ascomycetous genus, Phialophora. C. californicum was the only orchid species with apparently low specificity, as it associated with tulasnelloid, ceratobasidioid, and sebacinoid fungi in roughly equal proportion. Our results add support to the growing literature showing that high specificity is not limited to nonphotosynthetic plants, but also occurs in photosynthetic ones.
منابع مشابه
High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium
Lady’s slipper orchids ( Cypripedium spp.) are rare terrestrial plants that grow throughout the temperate Northern Hemisphere. Like all orchids, they require mycorrhizal fungi for germination and seedling nutrition. The nutritional relationships of adult Cypripedium mycorrhizae are unclear; however, Cypripedium distribution may be limited by mycorrhizal specificity, whether this specificity occ...
متن کاملRestoring the rare Kentucky lady’s slipper orchid to the Kisatchie National Forest
98 Figure 1. Cypripedium kentuckiense orchid showing the distinctive lady's slipper features of its flowers and leaves.
متن کاملEvolution and Biogeography of the Slipper Orchids: Eocene Vicariance of the Conduplicate Genera in the Old and New World Tropics
Intercontinental disjunctions between tropical regions, which harbor two-thirds of the flowering plants, have drawn great interest from biologists and biogeographers. Most previous studies on these distribution patterns focused on woody plants, and paid little attention to herbs. The Orchidaceae is one of the largest families of angiosperms, with a herbaceous habit and a high species diversity ...
متن کاملInside the Trap of a Yellow Lady's Slipper Orchid (cypripedium Parviflorum Var. Pubescens): the Effects of 'light Windows' and Flower Orientation on the Behavior of a Native Bee (andrena Macra)
متن کامل
Continent-wide distribution in mycorrhizal fungi: implications for the biogeography of specialized orchids.
BACKGROUND AND AIMS Although mycorrhizal associations are predominantly generalist, specialized mycorrhizal interactions have repeatedly evolved in Orchidaceae, suggesting a potential role in limiting the geographical range of orchid species. In particular, the Australian orchid flora is characterized by high mycorrhizal specialization and short-range endemism. This study investigates the mycor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2005